Skip to content

Displaying 291-300 of 662 results for

Last 90 Days clear

Automation is Evolving - Make it Work for You

WEST Session: Robotics is advancing at a remarkable pace. Smarter AI models and improved hardware have made robots more capable and accessible than ever before. These shifts are transforming how we can make use of automation in fundamental ways: 1. Expand use cases through adaptability. Flexible robotic deployments open up opportunities to capture value from a wider range of applications. Adaptive automation becomes a tool for navigating uncertainty rather than a rigid asset. 2. Deploy faster with simplified programming. Your team no longer needs to spend days learning how to program the robot. Instruct robots in plain English instead. 3. Scale through modularity. Ecosystems designed around modular components allow deployments to grow and evolve with your operations. The cost of integration falls as automation spreads across your workflows. 4. Empower your workforce. Automation learns and scales the manufacturing knowledge of your company, enabling your team to focus on higher-value, higher-impact work. Join us to explore how these changes are reshaping both the economics and the role of automation, and what they mean for the future of your operations.

The Value of Digital Twins in Modern Manufacturing

WEST Session: Digital twins are rapidly becoming a cornerstone of advanced manufacturing, enabling companies to simulate, optimize, and validate their production processes in a virtual environment before committing to physical execution. This presentation explores the value of digital twins specifically in the domains of CNC machining, robotic automation, and the broader virtual factory. In CNC machining, digital twins replicate the behavior of machines, tools, and part geometries, allowing for precise simulation of toolpaths and real-time detection of potential collisions, over-travel, and inefficiencies. By simulating the exact machine kinematics, spindle dynamics, and tool libraries, manufacturers can reduce setup times, improve part quality, and significantly lower the risk of costly rework or downtime. In robotic work cells, digital twins mirror robotic behavior, motion, and task sequences. This enables manufacturers to program, test, and optimize robot trajectories and tool interactions virtually - ensuring safety, cycle time optimization, and maximum utilization of expensive automation assets. Collision detection, reach analysis, and process synchronization can all be handled digitally before deployment on the shop floor. At the virtual factory level, digital twins provide a holistic view of the entire manufacturing environment - integrating machines, robotics, material flow, operators, and logistics into a unified simulation. This enables strategic decision-making, accurate capacity planning, and the ability to test process changes in a risk-free virtual environment. The result is greater agility, resilience, and efficiency across the entire production lifecycle. Attendees will gain insight into how digital twins reduce risk, increase productivity, and enable smarter planning across manufacturing operations. By harnessing digital twins in CNC machining, robotic systems, and factory-wide simulations, companies can accelerate their journey toward digital transformation and fully realize the promise of Industry 4.0.

Reimagining AI for Manufacturing: A Paradigm Shift from Adaptation to Evolution

WEST Session: This presentation challenges the prevailing narrative that manufacturing must conform to AI, proposing instead that AI must evolve to meet manufacturing's unique demands. After over a decade of attempting to transplant cloud-designed AI models into manufacturing environments, it has become clear that this approach is not practical. Rather than continuing to quotes percentages of failures, we advocate for a fundamental shift in perspective. If AI's core strength lies in pattern recognition and learning, why not leverage this capability to make AI itself more adaptable to manufacturing contexts? This talk demonstrates how AI can be redesigned to thrive in manufacturing environments through concrete examples that accelerate the development of robust, continuously learning models. We examine three critical assumptions that, when reconsidered, significantly enhance AI adoption and scalability in manufacturing. First, we start with quantifying success. Time invested in understanding and quantifying the trade-offs that matter to a production line is invariably worthwhile. Consider quality control as an example: should you prioritize developing a model that catches every defect, or one that minimizes false positives by avoiding the misclassification of good products as defective? Like human decision-making, AI systems will inevitably make errors—the key is to design systems that account for and manage these errors rather than pretending they won't occur. Second, we tackle data strategy. Manufacturing data represents valuable intellectual property that demands strategic handling. Contrary to popular belief, more data doesn't always yield better results. Our experience shows that indiscriminate data usage often produces sluggish, costly models that are challenging to troubleshoot and maintain. Hence, data selection strategies play a crucial role in the long-term success of a solution. Finally, we emphasize AI's inherently non-deterministic nature. Treating AI as a deterministic tool fundamentally limits its adaptive potential. Instead of rebuilding AI systems with every product change, we propose designing solutions that inherently evolve with environmental shifts—both incremental and substantial. This approach positions AI as a dynamic partner in manufacturing, capable of continuous learning and adaptation rather than a rigid tool requiring costly reconfiguration.

Matthew Dainko

Speaker at WEST: Matthew Dainko, Director of Business Development, Complete

Graham Hargreaves

Speaker at WEST: Graham Hargreaves, Strategic Business Manager, CAD/CAM Consulting Svcs.

James Meyette

Speaker at WEST: James Meyette, Senior Application Engineer, Selway Machine Tool Co.

The Programmer/Machinist Mindset: How to Strive for Continuous Improvement

WEST Session: Moderated by: Graham Hargreaves, CAD/CAM Consulting Services “You just have to finesse it...” “...finagle it” “...jockey it around a little.” These are highly technical terms to describe how engineers, programmers, and machinists make the software and machines at hand do something a little avant-garde to make a workpiece as spec’ed. For machine shop owners, pressure is growing to deliver increasingly complex, never-before-seen parts—and so are the challenges. From tight timelines to tighter tolerances, the path from design to finished part is rarely straightforward. But there is a path, and it involves creating a collaborative environment where engineers, programmers and machinists engage in open communication to problem solve on the fly. This panel will address the key challenges manufacturers face today, including: · Handling first-time parts with no proven toolpaths or machining history · Working around software limitations when standard CAM strategies fall short · Bridging the gap between engineering, programming, and machining to avoid costly miscommunication · Maximizing existing machine capabilities without compromising part quality · Collaborating under pressure to solve problems in real time on the shop floor Panelists will share real-world examples and proven strategies for overcoming these obstacles through smarter programming, tighter collaboration, and creative problem-solving. Whether you're running a small job shop or managing a larger operation, this session will offer practical insights to help your team work more efficiently, reduce rework, and stay competitive in a fast-changing manufacturing landscape. This conversation will bring this reality to light and attempt to lift up the entire industry, and encourage everyone to never stop learning, tinkering, and tweaking.

GibbsCAM - Powerfully Simple, Simply Powerful!

WEST Session: In this presentation, we’ll explore how GibbsCAM empowers modern machine shops to overcome complex manufacturing challenges through advanced, yet intuitive, CAM technology. We’ll walk through real-world part examples that demonstrate how GibbsCAM streamlines programming for Milling, Turning, and Multi-Task Machines. Attendees will learn how to reduce cycle times, improve toolpath quality, and eliminate redundant operations using intelligent automation, toolpath optimization, and post processor customization. We’ll highlight strategies like adaptive roughing, simultaneous machining, and sync management for multi-channel machines—all designed to help manufacturers maximize spindle uptime and shorten setup times. We'll also showcase how GibbsCAM’s associative modeling, geometry creation tools, and integrated simulation reduce scrap and improve confidence before the part hits the machine. This session will provide actionable insights to improve programming workflow. By combining powerful functionality with a user-friendly interface, GibbsCAM gives you the control and flexibility needed to stay competitive in today’s fast-paced manufacturing world. Join us to see how GibbsCAM can help you do more with your machines.