Skip to content

Displaying 121-130 of 241 results for

Last 30 Days clear

Automation is Evolving - Make it Work for You

WEST Session: Robotics is advancing at a remarkable pace. Smarter AI models and improved hardware have made robots more capable and accessible than ever before. These shifts are transforming how we can make use of automation in fundamental ways: 1. Expand use cases through adaptability. Flexible robotic deployments open up opportunities to capture value from a wider range of applications. Adaptive automation becomes a tool for navigating uncertainty rather than a rigid asset. 2. Deploy faster with simplified programming. Your team no longer needs to spend days learning how to program the robot. Instruct robots in plain English instead. 3. Scale through modularity. Ecosystems designed around modular components allow deployments to grow and evolve with your operations. The cost of integration falls as automation spreads across your workflows. 4. Empower your workforce. Automation learns and scales the manufacturing knowledge of your company, enabling your team to focus on higher-value, higher-impact work. Join us to explore how these changes are reshaping both the economics and the role of automation, and what they mean for the future of your operations.

Guillermo Peregrino

Speaker at WEST: Guillermo Peregrino, Manufacturing Engineering Manager, Aero Bending Company

Reimagining AI for Manufacturing: A Paradigm Shift from Adaptation to Evolution

WEST Session: This presentation challenges the prevailing narrative that manufacturing must conform to AI, proposing instead that AI must evolve to meet manufacturing's unique demands. After over a decade of attempting to transplant cloud-designed AI models into manufacturing environments, it has become clear that this approach is not practical. Rather than continuing to quotes percentages of failures, we advocate for a fundamental shift in perspective. If AI's core strength lies in pattern recognition and learning, why not leverage this capability to make AI itself more adaptable to manufacturing contexts? This talk demonstrates how AI can be redesigned to thrive in manufacturing environments through concrete examples that accelerate the development of robust, continuously learning models. We examine three critical assumptions that, when reconsidered, significantly enhance AI adoption and scalability in manufacturing. First, we start with quantifying success. Time invested in understanding and quantifying the trade-offs that matter to a production line is invariably worthwhile. Consider quality control as an example: should you prioritize developing a model that catches every defect, or one that minimizes false positives by avoiding the misclassification of good products as defective? Like human decision-making, AI systems will inevitably make errors—the key is to design systems that account for and manage these errors rather than pretending they won't occur. Second, we tackle data strategy. Manufacturing data represents valuable intellectual property that demands strategic handling. Contrary to popular belief, more data doesn't always yield better results. Our experience shows that indiscriminate data usage often produces sluggish, costly models that are challenging to troubleshoot and maintain. Hence, data selection strategies play a crucial role in the long-term success of a solution. Finally, we emphasize AI's inherently non-deterministic nature. Treating AI as a deterministic tool fundamentally limits its adaptive potential. Instead of rebuilding AI systems with every product change, we propose designing solutions that inherently evolve with environmental shifts—both incremental and substantial. This approach positions AI as a dynamic partner in manufacturing, capable of continuous learning and adaptation rather than a rigid tool requiring costly reconfiguration.

Reimagining AI for Manufacturing: A Paradigm Shift from Adaptation to Evolution

WEST Session: This presentation challenges the prevailing narrative that manufacturing must conform to AI, proposing instead that AI must evolve to meet manufacturing's unique demands. After over a decade of attempting to transplant cloud-designed AI models into manufacturing environments, it has become clear that this approach is not practical. Rather than continuing to quotes percentages of failures, we advocate for a fundamental shift in perspective. If AI's core strength lies in pattern recognition and learning, why not leverage this capability to make AI itself more adaptable to manufacturing contexts? This talk demonstrates how AI can be redesigned to thrive in manufacturing environments through concrete examples that accelerate the development of robust, continuously learning models. We examine three critical assumptions that, when reconsidered, significantly enhance AI adoption and scalability in manufacturing. First, we start with quantifying success. Time invested in understanding and quantifying the trade-offs that matter to a production line is invariably worthwhile. Consider quality control as an example: should you prioritize developing a model that catches every defect, or one that minimizes false positives by avoiding the misclassification of good products as defective? Like human decision-making, AI systems will inevitably make errors—the key is to design systems that account for and manage these errors rather than pretending they won't occur. Second, we tackle data strategy. Manufacturing data represents valuable intellectual property that demands strategic handling. Contrary to popular belief, more data doesn't always yield better results. Our experience shows that indiscriminate data usage often produces sluggish, costly models that are challenging to troubleshoot and maintain. Hence, data selection strategies play a crucial role in the long-term success of a solution. Finally, we emphasize AI's inherently non-deterministic nature. Treating AI as a deterministic tool fundamentally limits its adaptive potential. Instead of rebuilding AI systems with every product change, we propose designing solutions that inherently evolve with environmental shifts—both incremental and substantial. This approach positions AI as a dynamic partner in manufacturing, capable of continuous learning and adaptation rather than a rigid tool requiring costly reconfiguration.

Matthew Dainko

Speaker at WEST: Matthew Dainko, Director of Business Development, Complete

GibbsCAM - Powerfully Simple, Simply Powerful!

WEST Session: In this presentation, we’ll explore how GibbsCAM empowers modern machine shops to overcome complex manufacturing challenges through advanced, yet intuitive, CAM technology. We’ll walk through real-world part examples that demonstrate how GibbsCAM streamlines programming for Milling, Turning, and Multi-Task Machines. Attendees will learn how to reduce cycle times, improve toolpath quality, and eliminate redundant operations using intelligent automation, toolpath optimization, and post processor customization. We’ll highlight strategies like adaptive roughing, simultaneous machining, and sync management for multi-channel machines—all designed to help manufacturers maximize spindle uptime and shorten setup times. We'll also showcase how GibbsCAM’s associative modeling, geometry creation tools, and integrated simulation reduce scrap and improve confidence before the part hits the machine. This session will provide actionable insights to improve programming workflow. By combining powerful functionality with a user-friendly interface, GibbsCAM gives you the control and flexibility needed to stay competitive in today’s fast-paced manufacturing world. Join us to see how GibbsCAM can help you do more with your machines.

Rob Sims

Speaker at WEST: Rob Sims, Founder & CTO, Alchemi Data Management, Inc.

Tyson Copa

Speaker at WEST: Tyson Copa, Platform Specialist, IMAGINiT